熟妇人妻久久中文字幕,成人影片一区免费观看,免费三级网站,午夜熟女插插xx免费视频

正弦定理的教學(xué)設(shè)計

時間:2024-11-22 10:26:50 晶敏 教學(xué)設(shè)計 我要投稿

正弦定理的教學(xué)設(shè)計(精選10篇)

  作為一位杰出的老師,常常要寫一份優(yōu)秀的教學(xué)設(shè)計,借助教學(xué)設(shè)計可使學(xué)生在單位時間內(nèi)能夠?qū)W到更多的知識。那么優(yōu)秀的教學(xué)設(shè)計是什么樣的呢?下面是小編整理的正弦定理的教學(xué)設(shè)計(精選10篇),僅供參考,希望能夠幫助到大家。

正弦定理的教學(xué)設(shè)計(精選10篇)

  正弦定理的教學(xué)設(shè)計 1

  一、教學(xué)內(nèi)容分析

  本節(jié)課是高一數(shù)學(xué)第五章《三角比》第三單元中正弦定理的第一課時,它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標法等知識在三角形中的具體運用,是生產(chǎn)、生活實際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關(guān)系,它與后面的余弦定理都是解三角形的重要工具。

  本節(jié)課其主要任務(wù)是引入證明正弦定理及正弦定理的基本應(yīng)用,在課型上屬于“定理教學(xué)課”。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識,使學(xué)生掌握新的有用的知識,體會聯(lián)系、發(fā)展等辯證觀點,學(xué)生通過對定理證明的探究和討論,體驗到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,進而培養(yǎng)學(xué)生提出問題、解決問題等研究性學(xué)習(xí)的能力。

  二、學(xué)情分析

  對高一的學(xué)生來說,一方面已經(jīng)學(xué)習(xí)了平面幾何,解直角三角形,任意角的三角比等知識,具有一定觀察分析、解決問題的能力;但另一方面對新舊知識間的聯(lián)系、理解、應(yīng)用往往會出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點,教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動性,注意前后知識間的聯(lián)系,引導(dǎo)學(xué)生直接參與分析問題、解決問題。

  三、設(shè)計思想:

  培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)、學(xué)會探究是全面發(fā)展學(xué)生能力的重要方面,也是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)、學(xué)會探究呢?建構(gòu)主義認為:“知識不是被動吸收的,而是由認知主體主動建構(gòu)的!边@個觀點從教學(xué)的角度來理解就是:知識不僅是通過教師傳授得到的,更重要的是學(xué)生在一定的情境中,運用已有的學(xué)習(xí)經(jīng)驗,并通過與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強調(diào)以學(xué)生為中心,視學(xué)生為認知的主體,教師只對學(xué)生的意義建構(gòu)起幫助和促進作用。本節(jié)“正弦定理”的教學(xué),將遵循這個原則而進行設(shè)計。

  四、教學(xué)目標:

  1、在創(chuàng)設(shè)的問題情境中,讓學(xué)生從已有的幾何知識和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗坐標法將幾何問題轉(zhuǎn)化為代數(shù)問題的優(yōu)越性,感受數(shù)學(xué)論證的嚴謹性.

  2、理解三角形面積公式,能運用正弦定理解決三角形的兩類基本問題,并初步認識用正弦定理解三角形時,會有一解、兩解、無解三種情況。

  3、通過對實際問題的探索,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,激發(fā)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生感受到數(shù)學(xué)知識既來源于生活,又服務(wù)與生活。

  五、教學(xué)重點與難點

  教學(xué)重點:正弦定理的探索與證明;正弦定理的基本應(yīng)用。

  教學(xué)難點:正弦定理的探索與證明。

  突破難點的手段:抓知識選擇的切入點,從學(xué)生原有的認知水平和所需的知識特點入手,教師在學(xué)生主體下給于適當(dāng)?shù)奶崾竞椭笇?dǎo)。

  復(fù)習(xí)引入:

  1.在任意三角形行中有大邊對大角,小邊對小角的邊角關(guān)系?是否可以把邊、角關(guān)系準確量化?

  2.在ABC中,角A、B、C的正弦對邊分別是a,b,c,你能發(fā)現(xiàn)它們之間有什么關(guān)系嗎?

  結(jié)論:

  證明:(向量法)過A作單位向量j垂直于AC,由AC+CB=AB邊同乘以單位向量。

  正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等。

  本節(jié)是“正弦定理”定理的第一節(jié),在備課中有兩個問題需要精心設(shè)計.一個是問題的.引入,一個是定理的證明.通過兩個實際問題引入,讓學(xué)生體會為什么要學(xué)習(xí)這節(jié)課,從學(xué)生的“最近發(fā)展區(qū)”入手進行設(shè)計,尋求解決問題的方法.具體的思路就是從解決課本的實際問題入手展開,將問題一般化導(dǎo)出三角形中的邊角關(guān)系——正弦定理.因此,做好“正弦定理”的教學(xué)既能復(fù)習(xí)鞏固舊知識,也能讓學(xué)生掌握新的有用的知識,有效提高學(xué)生解決問題的能力。

  1.在教學(xué)過程中,我注重引導(dǎo)學(xué)生的思維發(fā)生,發(fā)展,讓學(xué)生體會數(shù)學(xué)問題是如何解決的,給學(xué)生解決問題的一般思路。從學(xué)生熟悉的直角三角形邊角關(guān)系,把銳角三角形和鈍角三角形的問題也轉(zhuǎn)化為直角三角形的性,從而得到解決,并滲透了分類討論思想和數(shù)形結(jié)合思想等思想。

  2.在教學(xué)中我恰當(dāng)?shù)乩枚嗝襟w技術(shù),是突破教學(xué)難點的一個重要手段.利用《幾何畫板》探究比值的值,由動到靜,取得了很好的效果,加深了學(xué)生的印象.

  3.由于設(shè)計的內(nèi)容比較的多,教學(xué)時間的超時,這說明我自己對學(xué)生情況的把握不夠準確到位,致使教學(xué)過程中時間的分配不夠適當(dāng),教學(xué)語言不夠精簡,今后我一定避免此類問題,爭取更大的進步。

  正弦定理的教學(xué)設(shè)計 2

  一、教材分析

  “解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強的應(yīng)用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內(nèi)容從知識體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識的基礎(chǔ)上,通過對三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗 “觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時在解決問題的過程中,感受數(shù)學(xué)的力量,進一步培養(yǎng)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識。

  二、學(xué)情分析

  我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識和技能還不高。但是,大多數(shù)學(xué)生對數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯的表現(xiàn)。

  三、教學(xué)目標

  1、知識和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。

  過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對現(xiàn)實世界的一些數(shù)學(xué)模型進行思考。

  情感、態(tài)度、價值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時,通過實際問題的探討、解決,讓學(xué)生體驗學(xué)習(xí)成就感,增強數(shù)學(xué)學(xué)習(xí)興趣和主動性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。

  2、教學(xué)重點、難點

  教學(xué)重點:正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。

  教學(xué)難點:正弦定理證明及應(yīng)用。

  四、教學(xué)方法與手段

  為了更好的達成上面的教學(xué)目標,促進學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實物投影儀等教學(xué)手段來激發(fā)興趣、突出重點,突破難點,提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結(jié)構(gòu)。

  五、教學(xué)過程

  為了很好地完成我所確定的教學(xué)目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學(xué)生、貼近時代的原則,我設(shè)計了這樣的教學(xué)過程:

  (一)創(chuàng)設(shè)情景,揭示課題

  問題1:寧靜的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?

  1671年兩個法國天文學(xué)家首次測出了地月之間的距離大約為 385400km,你知道他們當(dāng)時是怎樣測出這個距離的嗎?

  問題2:在現(xiàn)在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)

  [設(shè)計說明]引用教材本章引言,制造知識與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識的興趣。

  (二)特殊入手,發(fā)現(xiàn)規(guī)律

  問題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實力,請你根據(jù)初中知識,解決這樣一個問題。在rt⊿abc中sina= ,sinb= ,sinc= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?

  引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理

  (三)類比歸納,嚴格證明

  問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當(dāng)一回老師,如果有個學(xué)生把條件中的rt⊿abc不小心寫成了銳角⊿abc,其它沒有變,你說這個結(jié)論還成立嗎?

  [設(shè)計說明]此時放手讓學(xué)生自己完成,如果感覺自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵學(xué)生用不同的方法證明這個結(jié)論,在巡視的過程中讓不同方法的學(xué)生上黑板展示,如果沒有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。

  問題5:好根據(jù)剛才我們的研究,說明這一結(jié)論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿abc改為角鈍角⊿abc,其它不變,這個結(jié)論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發(fā)引導(dǎo)學(xué)生用多種方法加以研究證明,尤其是向量法,在下節(jié)余弦定理的證明中還要用,因此務(wù)必啟發(fā)學(xué)生用向量法完成證明。)

  [設(shè)計說明] 放手給學(xué)生實踐的機會和時間,使學(xué)生真正的參與到問題解決的過程中去,讓學(xué)生在學(xué)數(shù)學(xué)的實踐中去感悟和提高數(shù)學(xué)的思維方法和思維習(xí)慣。同時,考慮到有部分同學(xué)基礎(chǔ)較差,考個人或小組可能無法完成探究任務(wù),教師在學(xué)生動手的同時,通過巡查,讓提前證明出結(jié)論的同學(xué)上黑板完成,這樣做一方面肯定了先完成的同學(xué)的先進性,鍛煉了上黑板同學(xué)的解題過程的書寫規(guī)范性,同時,也讓從無從下手的同學(xué)有個參考,不至于閑呆著浪費時間。

  問題6:由此,你能否得到一個更一般的結(jié)論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節(jié)課研究的'主要內(nèi)容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內(nèi)容)

  教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學(xué)家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現(xiàn)與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎(chǔ)上得出的。不管怎樣,我們說在10XX年以前,人們就發(fā)現(xiàn)了這個充滿著數(shù)學(xué)美的結(jié)論,不能不說也是人類數(shù)學(xué)史上的一個奇跡。老師希望21世紀的你能在今后的學(xué)習(xí)中也研究出一個被后人景仰的某某定理來,到那時我也就成了數(shù)學(xué)家的老師了。當(dāng)然,老師的希望能否變成現(xiàn)實,就要看大家的了。

  [設(shè)計說明] 通過本段內(nèi)容的講解,滲透一些數(shù)學(xué)史的內(nèi)容,對學(xué)生不僅有數(shù)學(xué)美得熏陶,更能激發(fā)學(xué)生學(xué)習(xí)科學(xué)文化知識的熱情。

  (四)強化理解,簡單應(yīng)用

  下面請大家看我們的教材2-3頁到例題1上邊,并自學(xué)解三角形定義。

  [設(shè)計說明] 讓學(xué)生看看書,放慢節(jié)奏,有利于學(xué)生消化和吸收剛才的內(nèi)容,同時教師可以利用這段時間對個別學(xué)困生進行輔導(dǎo),以減少掉隊的同學(xué)數(shù)量,同時培養(yǎng)學(xué)生養(yǎng)成自覺看書的好習(xí)慣。

  我們學(xué)習(xí)了正弦定理之后,你覺得它有什么應(yīng)用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:

  問題7:(教材例題1)⊿abc中,已知a=30,b=75,a=40cm,解三角形。

  (本題簡單,找兩位同學(xué)上黑板完成,其他同學(xué)在底下練習(xí)本上完成,同學(xué)可以小聲音討論,完成后教師根據(jù)學(xué)生實踐中發(fā)現(xiàn)的問題給予必要的講評)

  [設(shè)計說明] 充分給學(xué)生自己動手的時間和機會,由于本題是唯一解,為將來學(xué)生感悟什么情況下三角形有唯一解創(chuàng)造條件。

  強化練習(xí)。

  讓全體同學(xué)限時完成教材4頁練習(xí)第一題,找兩位同學(xué)上黑板。

  問題8:(教材例題2)在⊿abc中a=20cm,b=28cm,a=30,解三角形。

  [設(shè)計說明]例題2較難,目的是使學(xué)生明確,利用正弦定理有兩種可能,同時,引導(dǎo)學(xué)生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學(xué)有余力的同學(xué)鼓勵他們自學(xué)探究與發(fā)現(xiàn)教材8頁得內(nèi)容:《解三角形的進一步討論》

  (五)小結(jié)歸納,深化拓展

  1、正弦定理

  2、正弦定理的證明方法

  3、正弦定理的應(yīng)用

  4、涉及的數(shù)學(xué)思想和方法。

  [設(shè)計說明] 師生共同總結(jié)本節(jié)課的收獲的同時,引導(dǎo)學(xué)生學(xué)會自己總結(jié),讓學(xué)生進一步回顧和體會知識的形成、發(fā)展、完善的過程。

  (六)布置作業(yè),鞏固提高

  1、教材10頁習(xí)題1.1a組第1題。

  2、學(xué)有余力的同學(xué)探究10頁b組第1題,體會正弦定理的其他證明方法。

  證明:設(shè)三角形外接圓的半徑是r,則a=2rsina,b=2rsinb, c=2rsinc

  [設(shè)計說明] 對不同水平的學(xué)生設(shè)計不同梯度的作業(yè),尊重學(xué)生的個性差異,有利于因材施教的教學(xué)原則的貫徹。

  (七)板書設(shè)計:(略)

  正弦定理的教學(xué)設(shè)計 3

  教材分析

  這是高三一輪復(fù)習(xí),內(nèi)容是必修5第一章解三角形。本章內(nèi)容準備復(fù)習(xí)兩課時。本節(jié)課是第一課時。標要求本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后應(yīng)落實在解三角形的應(yīng)用上。通過本節(jié)學(xué)習(xí),學(xué)生應(yīng)當(dāng)達到以下學(xué)習(xí)目標:

 。1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理解三角形。

 。2)能夠運用正弦定理、余弦定理等知識和方法判斷三角形形狀的問題。本章內(nèi)容與三角函數(shù)、向量聯(lián)系密切。

  作為復(fù)習(xí)課一方面將本章知識作一個梳理,另一方面通過整理歸納幫助學(xué)生進一步達到相應(yīng)的學(xué)習(xí)目標。

  學(xué)情分析

  學(xué)生通過必修5的學(xué)習(xí),對正弦定理、余弦定理的內(nèi)容已經(jīng)了解,但對于如何靈活運用定理解決實際問題,怎樣合理選擇定理進行邊角關(guān)系轉(zhuǎn)化從而解決三角形綜合問題,學(xué)生還需通過復(fù)習(xí)提點有待進一步理解和掌握。

  教學(xué)目標知識目標:

 。1)學(xué)生通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦、余弦定理的內(nèi)容及其證明方法;會運用正、余弦定理與三角形內(nèi)角和定理,面積公式解斜三角形的兩類基本問題。

 。2)學(xué)生學(xué)會分析問題,合理選用定理解決三角形綜合問題。

  能力目標:

  培養(yǎng)學(xué)生提出問題、正確分析問題、獨立解決問題的能力,培養(yǎng)學(xué)生在方程思想指導(dǎo)下處理解三角形問題的運算能力,培養(yǎng)學(xué)生合情推理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思維能力。

  情感目標:

  通過生活實例探究回顧三角函數(shù)、正余弦定理,體現(xiàn)數(shù)學(xué)來源于生活,并應(yīng)用于生活,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并體會數(shù)學(xué)的應(yīng)用價值,在教學(xué)過程中激發(fā)學(xué)生的探索精神。

  教學(xué)方法探究式教學(xué)、講練結(jié)合

  重點難點

  1、正、余弦定理的對于解解三角形的合理選擇;

  2、正、余弦定理與三角形的有關(guān)性質(zhì)的綜合運用。

  教學(xué)策略

  1、重視多種教學(xué)方法有效整合;

  2、重視提出問題、解決問題策略的指導(dǎo)。

  3、重視加強前后知識的密切聯(lián)系。

  4、重視加強數(shù)學(xué)實踐能力的培養(yǎng)。

  5、注意避免過于繁瑣的形式化訓(xùn)練

  6、教學(xué)過程體現(xiàn)“實踐→認識→實踐”。

  設(shè)計意圖:

  學(xué)生通過必修5的學(xué)習(xí),對正弦定理、余弦定理的內(nèi)容已經(jīng)了解,但對于如何靈活運用定理解決實際問題,怎樣合理選擇定理進行邊角關(guān)系轉(zhuǎn)化從而解決三角形綜合問題,學(xué)生還需通過復(fù)習(xí)提點有待進一步理解和掌握。作為復(fù)習(xí)課一方面要將本章知識作一個梳理,另一方面要通過整理歸納幫助學(xué)生學(xué)會分析問題,合理選用并熟練運用正弦定理、余弦定理等知識和方法解決三角形綜合問題和實際應(yīng)用問題。

  數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識的'理解和掌握。雖然是復(fù)習(xí)課,但我們不能一味的講題,在教學(xué)中應(yīng)體現(xiàn)以下教學(xué)思想:

 、胖匾暯虒W(xué)各環(huán)節(jié)的合理安排:

  在生活實踐中提出問題,再引導(dǎo)學(xué)生帶著問題對新知進行探究,然后引導(dǎo)學(xué)生回顧舊知識與方法,引出課題。激發(fā)學(xué)生繼續(xù)學(xué)習(xí)新知的欲望,使學(xué)生的知識結(jié)構(gòu)呈一個螺旋上升的狀態(tài),符合學(xué)生的認知規(guī)律。

  ⑵重視多種教學(xué)方法有效整合,以講練結(jié)合法、分析引導(dǎo)法、變式訓(xùn)練法等多種方法貫穿整個教學(xué)過程。

 、侵匾曁岢鰡栴}、解決問題策略的指導(dǎo)。

 、戎匾暭訌娗昂笾R的密切聯(lián)系。對于新知識的探究,必須增加足夠的預(yù)備知識,做好銜接。要對學(xué)生已有的知識進行分析、整理和篩選,把對學(xué)生后繼學(xué)習(xí)中有需要的知識選擇出來,在新知識介紹之前進行復(fù)習(xí)。

  ⑸注意避免過于繁瑣的形式化訓(xùn)練。從數(shù)學(xué)教學(xué)的傳統(tǒng)上看解三角形內(nèi)容有不少高度技巧化、形式化的問題,我們在教學(xué)過程中應(yīng)該注意盡量避免這一類問題的出現(xiàn)。

  二、實施教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境、揭示提出課題

  引例:要測量南北兩岸a、b兩個建筑物之間的距離,在南岸選取相距a點km的c點,并通過經(jīng)緯儀測的,你能計算出a、b之間的距離嗎?若人在南岸要測量對岸b、d兩個建筑物之間的距離,該如何進行?

 。ǘ⿵(fù)習(xí)回顧、知識梳理

  1.正弦定理:

  正弦定理的變形:

  利用正弦定理,可以解決以下兩類有關(guān)三角形的問題。

 。1)已知兩角和任一邊,求其他兩邊和一角;

 。2)已知兩邊和其中一邊的對角,求另一邊的對角。(從而進一步求出其他的邊和角)

  2.余弦定理:

  a2=b2+c2-2bccosa;

  b2=c2+a2-2cacosb;

  c2=a2+b2-2abcosc。

  cosa=;

  cosb=;

  cosc=。

  利用余弦定理,可以解決以下兩類有關(guān)三角形的問題:

  (1)已知三邊,求三個角;

 。2)已知兩邊和它們的夾角,求第三邊和其他兩個角。

  3.三角形面積公式:

 。ㄈ┳灾鳈z測、知識鞏固

 。ㄋ模┑淅龑(dǎo)航、知識拓展

  【例1】 △abc的三個內(nèi)角a、b、c的對邊分別是a、b、c,如果a2=b(b+c),求證:a=2b。

  剖析:研究三角形問題一般有兩種思路。一是邊化角,二是角化邊。

  證明:用正弦定理,a=2rsina,b=2rsinb,c=2rsinc,代入a2=b(b+c)中,得sin2a=sinb(sinb+sinc)sin2a-sin2b=sinbsinc

  因為a、b、c為三角形的三內(nèi)角,所以sin(a+b)≠0。所以sin(a-b)=sinb。所以只能有a-b=b,即a=2b。

  評述:利用正弦定理,將命題中邊的關(guān)系轉(zhuǎn)化為角間關(guān)系,從而全部利用三角公式變換求解。

  思考討論:該題若用余弦定理如何解決?

  【例2】已知a、b、c分別是△abc的三個內(nèi)角a、b、c所對的邊,

 。1)若△abc的面積為,c=2,a=600,求邊a,b的值;

 。2)若a=ccosb,且b=csina,試判斷△abc的形狀。

  (五)變式訓(xùn)練、歸納整理

  【例3】已知a、b、c分別是△abc的三個內(nèi)角a、b、c所對的邊,若bcosc=(2a—c)cosb

  (1)求角b

  (2)設(shè),求a+c的值。

  剖析:同樣知道三角形中邊角關(guān)系,利用正余弦定理邊化角或角化邊,從而解決問題,此題所變化的是與向量相結(jié)合,利用向量的模與數(shù)量積反映三角形的邊角關(guān)系,把本質(zhì)看清了,問題與例2類似解決。

  此題分析后由學(xué)生自己作答,利用實物投影集體評價,再做歸納整理。

 。ń獯鹇裕

  課時小結(jié)(由學(xué)生歸納總結(jié),教師補充)

  1、解三角形時,找三邊一角之間的關(guān)系常用余弦定理,找兩邊兩角之間的關(guān)系常用正弦定理

  2、根據(jù)所給條件確定三角形的形狀,主要有兩種途徑:①化邊為角;②化角為邊。并常用正余弦定理實施邊角轉(zhuǎn)化。

  3、用正余弦定理解三角形問題可適當(dāng)應(yīng)用向量的數(shù)量積求三角形內(nèi)角與應(yīng)用向量的模求三角形的邊長。

  4、應(yīng)用問題可利用圖形將題意理解清楚,然后用數(shù)學(xué)模型解決問題。

  5、正余弦定理與三角函數(shù)、向量、不等式等知識相結(jié)合,綜合運用解決實際問題。

  課后作業(yè):

  材料三級跳

  創(chuàng)設(shè)情境,提出實際應(yīng)用問題,揭示課題

  學(xué)生在探究問題時發(fā)現(xiàn)是解三角形問題,通過問答將知識作一梳理。

  學(xué)生通過課前預(yù)熱1、2、3、的快速作答,對正余弦定理的基本運用有了一定的回顧

  學(xué)生探討

  知識的關(guān)聯(lián)與拓展

  正余弦定理與三角形內(nèi)角和定理,面積公式的綜合運用對學(xué)生來說也是難點,尤其是根據(jù)條件判斷三角形形狀。此處列舉例2讓學(xué)生進一步體會如何選擇定理進行邊角互化。

  本課是在學(xué)生學(xué)習(xí)了三角函數(shù)、平面幾何、平面向量、正弦和余弦定理的基礎(chǔ)上而設(shè)置的復(fù)習(xí)內(nèi)容,因此本課的教學(xué)有較多的處理辦法。從解三角形的問題出發(fā),對學(xué)過的知識進行分類,采用的例題是精心準備的,講解也是至關(guān)重要的。一開始的復(fù)習(xí)回顧學(xué)生能夠很好的回答正弦定理和余弦定理的基本內(nèi)容,但對于兩個定理的變形公式不知,也就是說對于公式的應(yīng)用不熟練。設(shè)計中的自主檢測幫助學(xué)生回顧記憶公式,對學(xué)生更有針對性的進行了訓(xùn)練。學(xué)生還是出現(xiàn)了問題,在遇到第一個正弦方程時,是只有一組解還是有兩組解,這是難點。例1、例2是常規(guī)題,讓學(xué)生應(yīng)用數(shù)學(xué)知識求解問題,可用正弦定理,也可用余弦定理,幫助學(xué)生鞏固正弦定理、余弦定理知識。

  本節(jié)課授課對象為高三6班的學(xué)生,上課氛圍非;钴S。考慮到這是一節(jié)復(fù)習(xí)課,學(xué)生已經(jīng)知道了定理的內(nèi)容,沒有經(jīng)歷知識的發(fā)生與推導(dǎo),所以興趣不夠,較沉悶。奧蘇貝爾指出,影響學(xué)習(xí)的最重要因素是學(xué)生已經(jīng)知道了什么,我們應(yīng)當(dāng)根據(jù)學(xué)生原有的知識狀況去進行教學(xué)。因而,在教學(xué)中,教師了解學(xué)生的真實的思維活動是一切教學(xué)工作的實際出發(fā)點。教師應(yīng)當(dāng)"接受"和"理解"學(xué)生的真實思想,盡管它可能是錯誤的或幼稚的,但卻具有一定的"內(nèi)在的"合理性,教師不應(yīng)簡單否定,而應(yīng)努力去理解這些思想的產(chǎn)生與性質(zhì)等等,只有真正理解了學(xué)生思維的發(fā)生發(fā)展過程,才能有的放矢地采取適當(dāng)?shù)慕虒W(xué)措施以便幫助學(xué)生不斷改進并最終實現(xiàn)自己的目標。由于這種探究課型在平時的教學(xué)中還不夠深入,有些學(xué)生往往以一種觀賞者的身份參與其中,主動探究意識不強,思維水平?jīng)]有達到足夠的提升。這些都是不足之處,比較遺憾。但相信隨著課改實驗的深入,這種狀況會逐步改善。畢竟輕松愉快的課堂是學(xué)生思維發(fā)展的天地,是合作交流、探索創(chuàng)新的主陣地,是思想教育的好場所。所以新課標下的課堂將會是學(xué)生和教師共同成長的舞臺!

  正弦定理的教學(xué)設(shè)計 4

  教材地位與作用:

  本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。因此,正弦定理的知識非常重要。

  學(xué)情分析:

  作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問題,就比較困難。

  教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

  教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

  (根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點,我制定了如下幾點教學(xué)目標)

  教學(xué)目標分析:

  知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。

  能力目標:探索正弦定理的證明過程,用歸納法得出結(jié)論。

  情感目標:通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實際應(yīng)用價值。

  教法學(xué)法分析:

  教法:采用探究式課堂教學(xué)模式,在教師的.啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

  學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動手嘗試相結(jié)合,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。

  教學(xué)過程

  (一)創(chuàng)設(shè)情境,布疑激趣

  “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠a=47°,∠b=53°,ab長為1m,想修好這個零件,但他不知道ac和bc的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進入今天的學(xué)習(xí)課題。

  (二)探尋特例,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。

  2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

  3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:

  在三角形中,角與所對的邊滿足關(guān)系

  這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認識從感性逐步上升到理性。

  (三)邏輯推理,證明猜想

  1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。

  2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。

  3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標法來證明

  (四)歸納總結(jié),簡單應(yīng)用

  1.讓學(xué)生用文字敘述正弦定理,引導(dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

  2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

  3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。

  (五)講解例題,鞏固定理

  1.例1。在△abc中,已知a=32°,b=81.8°,a=42.9cm.解三角形.

  例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

  2.例2.在△abc中,已知a=20cm,b=28cm,a=40°,解三角形.

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。

  (六)課堂練習(xí),提高鞏固

  1.在△abc中,已知下列條件,解三角形.

  (1)a=45°,c=30°,c=10cm(2)a=60°,b=45°,c=20cm

  2.在△abc中,已知下列條件,解三角形.

  (1)a=20cm,b=11cm,b=30°(2)c=54cm,b=39cm,c=115°

  學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

  (七)小結(jié)反思,提高認識

  通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?

  1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  2.它表述了三角形的邊與對角的正弦值的關(guān)系。

  3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。

  (從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)

  (八)任務(wù)后延,自主探究

  如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。

  (九)作業(yè)布置

  p10習(xí)題1.1a組習(xí)題1。

  正弦定理的教學(xué)設(shè)計 5

  【教學(xué)課題】

1.1.1正弦定理(第一課時)

  【教學(xué)背景】

本節(jié)課所面對的是普通高中招生中最后的一批學(xué)生,學(xué)習(xí)成績較差,中考成績大多在280分左右。自身缺少良好的學(xué)習(xí)習(xí)慣和一定的數(shù)學(xué)學(xué)習(xí)能力。因此在教學(xué)設(shè)計時,以基礎(chǔ)知識,基本方法的學(xué)習(xí)和應(yīng)用為主。在教學(xué)過程中,采用了以學(xué)生互動探究為主的“五二五”教學(xué)模式,以提高學(xué)生的學(xué)習(xí)興趣。

  【教析分析】

本章是高中數(shù)學(xué)必修5的第一章第一節(jié)內(nèi)容,是初中解直角三角形的拓展和延續(xù),重點揭示了三角形邊、角之間的數(shù)量關(guān)系。運用它可以解決一些與測量和幾何計算有關(guān)的實際問題。在高考中也常與三角函數(shù)、平面向量等知識結(jié)合在一起考考察。

  【學(xué)習(xí)目標】

通過對任意三角面積的探索,理解正弦定理的內(nèi)容及其推導(dǎo)過程;能夠通過觀察、歸納、猜想,由特殊到一般得到正弦定理,體驗數(shù)學(xué)發(fā)現(xiàn)與創(chuàng)造的歷程;掌握正弦定理并能夠運用正弦定理解決一些簡單的求邊角問題。

  【學(xué)習(xí)重點】

正弦定理的幾種形式。

  【學(xué)習(xí)難點】

正弦定理的推導(dǎo)與證明。

  【學(xué)習(xí)方法】

自主學(xué)習(xí)、合作探究

  【教學(xué)手段】

多媒體輔助教學(xué)

  【學(xué)習(xí)過程】

  一、復(fù)習(xí)引入

  在直角三角形中是如何定義邊角關(guān)系?

  任意三角形的高怎么求?

  二、合作探究

 。ㄒ螅簩W(xué)生先獨立思考,再以小組為單位交流討論結(jié)果,并派代表展示本組的討論結(jié)果。)探究一:在△ABC中,分別以a,b,c為底邊,求出相應(yīng)邊的高,并求出△ABC的面積。

  結(jié)論:對任意△ABC都有===.探究二:你能利用三角形的面積公式,做適當(dāng)?shù)淖冃,探尋出各角與其對邊的關(guān)系嗎?

  探究三:正弦定理說明在一個三角形中,各邊與所對角的.正弦的比相等,你能想辦法求出這個比值嗎?

  三、閱讀教材,記憶公式

  我們利用正弦定理可以解決一些怎樣的解三角形問題?

  已知求;

  已知求.四、小組合作,成果展示(要求:一、三、五組先做第一題再做第二題詞,二、四、六組先做第二題再做第一題;每組派兩位同學(xué)到黑板上板書,一位同學(xué)講解。評價標準:書寫規(guī)范,內(nèi)容準確,聲音洪亮,思路清晰。)

  1、在中,a=3,b=3 ,B=60,求a邊所對角的正弦值。

  2、在中,A=60,B=75,a=10,求邊c。

  五、課堂小結(jié)

 。▽W(xué)生小結(jié),相互補充。)

  六、能力提升

  在ABC中,已知A450,a2,b2,求B。

  七、檢測評價

  長江作業(yè)本2,3,4,5題。

  【教學(xué)反思】

  本節(jié)課較好的完成了教學(xué)任務(wù),實現(xiàn)了教學(xué)目標。在教學(xué)過程設(shè)計上充分考慮了學(xué)生的實際情況,從復(fù)習(xí)初中所學(xué)的直角三角形的邊角關(guān)系引入,為學(xué)生接下來探究三角形的面積做好鋪墊和引導(dǎo)。而不會讓學(xué)生感到很突兀,不知道從哪個角度入手。我的這個引入設(shè)計看上去很簡單,但卻是有心之作,是以學(xué)生為中心的一個設(shè)計。從后面對三角形面積的探究來看,這一個引入做的還是很成功的。

  本節(jié)課的第一個探究環(huán)節(jié)是對三角形面積公式的研究推導(dǎo),學(xué)生先獨立思考再小組交流討論,讓他們有了一定的結(jié)論和方法之后再交流討論,很好的保護了學(xué)生自主學(xué)習(xí)的空間,又給予了他們展示自己解決問題能力的機會,同時學(xué)會了傾聽別人的想法,讓基礎(chǔ)較差的同學(xué)在交流中得到點撥,成績較好的同學(xué)在爭論中加深了自己對問題的理解和思考。最后由學(xué)生展示探究結(jié)果,教師給予適當(dāng)?shù)脑u價和鼓勵,讓學(xué)生有學(xué)習(xí)的成就感,讓他們有了繼續(xù)學(xué)習(xí)的動力和興趣。

  本節(jié)課的第二個探究環(huán)節(jié)是由三角形的面積公式變形推導(dǎo)出正弦定理,這一環(huán)節(jié)比較簡單,操作性強,學(xué)生一點就通。正弦定理的證明方法有很多,比如利用三角形全等、三角形的外接圓、向量法等,本節(jié)課我對教材做了改編,利用三角形的面積公式來推導(dǎo)正弦定理,思路自然,目標明確,易于學(xué)生接受和探究。在具體推導(dǎo)時,要注重學(xué)生思維的發(fā)展過程,這是數(shù)學(xué)的靈魂。

  在完成了正弦定理的推導(dǎo)之后,設(shè)計了兩個簡單的求邊角問題。讓學(xué)生進一步熟悉正弦定理的形式和結(jié)構(gòu)特征。并讓學(xué)生在每組的黑板上板書并講解,即促使學(xué)生養(yǎng)成規(guī)范答題的習(xí)慣,又提升了數(shù)學(xué)語言的表達能力,還反饋了本節(jié)課的學(xué)習(xí)效果。

  總的來說,本節(jié)課是以學(xué)生自己學(xué)、小組學(xué)、集體學(xué)為主要學(xué)習(xí)模式的課,充分調(diào)動了學(xué)生的學(xué)習(xí)積極性,每一位學(xué)生都動了起來,都有所收獲。數(shù)學(xué)知識也在歡樂和諧的氛圍中主動的進入了學(xué)生的大腦。

  正弦定理的教學(xué)設(shè)計 6

  一、說教材

  正弦定理是高中新教材人教A版必修五第一章1.1.1的內(nèi)容,是學(xué)生在已有知識的基礎(chǔ)上,通過對三角形邊角關(guān)系的研究,發(fā)現(xiàn)并掌握三角形的邊長與角度之間的數(shù)量關(guān)系。提出兩個實際問題,并指出解決問題的關(guān)鍵在于研究三角形的邊、角關(guān)系,從而引導(dǎo)學(xué)生產(chǎn)生探索愿望,激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)過程中,要引導(dǎo)學(xué)生自主探究三角形的邊角關(guān)系,先由特殊情況發(fā)現(xiàn)結(jié)論,再對一般三角形進行推導(dǎo),并引導(dǎo)學(xué)生分析正弦定理可以解決兩類關(guān)于解三角形的問題:

  (1)已知兩角和一邊,解三角形;

  (2)已知兩邊和其中一邊的對角,解三角形。

  二、說學(xué)情

  本節(jié)授課對象是高二學(xué)生,是在學(xué)生學(xué)習(xí)了必修四基本初等函數(shù)和三角恒等變換的基礎(chǔ)上,由實際問題出發(fā)探索研究三角形邊角關(guān)系,得出正弦定理。高二學(xué)生對生產(chǎn)生活問題比較感興趣,由實際問題出發(fā)可以激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生產(chǎn)生探索研究的愿望。

  三、說教學(xué)目標

  【知識與技能目標】

  能準確寫出正弦定理的`符號表達式,能夠運用正弦定理理解三角形、初步解決某些測量和幾何計算有關(guān)的簡單的實際問題。

  【過程與方法目標】

  通過對定理的證明和應(yīng)用,鍛煉獨立解決問題的能力和體會分類討論和數(shù)形結(jié)合的思想方法。

  【情感態(tài)度價值觀目標】

  通過對三角形邊角關(guān)系的探究學(xué)習(xí),經(jīng)歷數(shù)學(xué)探究活動的過程,體會由特殊到一般再由一般到特殊的認識事物規(guī)律,培養(yǎng)探索精神和創(chuàng)新意識。

  四、教學(xué)重難點

  【重點】

  正弦定理及其推導(dǎo)。

  【難點】

  正弦定理的推導(dǎo)與正弦定理的運用。

  五、說教學(xué)方法

  運用“發(fā)現(xiàn)問題——自主探究——嘗試指導(dǎo)——合作交流”的教學(xué)方式,整堂課圍繞“一切為了學(xué)生發(fā)展”的教學(xué)原則,突出:師生互動、共同探索,教師指導(dǎo)、循序漸進。

  新課引入——提出問題,激發(fā)學(xué)生的求知欲。掌握正弦定理的推導(dǎo)證明——分類討論,數(shù)形結(jié)合動腦思考,由一般到特殊,組織學(xué)生自主探索,獲得正弦定理及證明過程。

  例題處理——始終由問題出發(fā),層層設(shè)疑,讓他們在探索中得到知識。鞏固練習(xí),深化對正弦定理的理解。

  六、說教學(xué)過程

  (一)導(dǎo)入新課

  我采用的是設(shè)疑導(dǎo)入,進行口頭提問:

  (1)在我國古代就有嫦娥奔月的神話故事,明月高懸,我們仰望星空,會有無限遐想,不禁會問,月亮離我們地球有多遠呢?科學(xué)家們是怎樣測出來的呢?

  (2)設(shè)A,B兩點在河的兩岸,只給你米尺和量角設(shè)備,不過河你可以測出它們之間的距離嗎?

  設(shè)計意圖:通過生活中的知識引入,激發(fā)學(xué)生學(xué)習(xí)需要和學(xué)習(xí)期待,以問題引起學(xué)生學(xué)習(xí)熱情和探索新知的欲望。讓學(xué)生積極主動的參與到課堂里面來,更好的調(diào)動學(xué)習(xí)氛圍。

  (二)新課教學(xué)

  1.復(fù)習(xí)舊知

  帶動學(xué)生回憶以前學(xué)過的知識,并設(shè)置如下問題引導(dǎo)學(xué)生思考,減少學(xué)生對新知識的陌生感。

  教師提問:

  (1)請同學(xué)們回憶一下,直角三角形中的各個角的正弦是怎樣表示的?這三個式子可以用同一個量聯(lián)系起來嗎?

  (2)在一般三角形中,該式是否也成立呢?

  這樣的設(shè)置是層層遞進,符合學(xué)生的認知特點,由易到難,從表象到實質(zhì)的規(guī)律,并且為后面的原因的探究奠定了基礎(chǔ)。

  2.定理的推導(dǎo)

  定理的推導(dǎo)是數(shù)學(xué)學(xué)習(xí)必不可少的一種能力,因此進行了如下推導(dǎo)過程。教師通過提示給出銳角三角形、鈍角三角形圖形設(shè)置一系列層層遞進的問題,用問題牽引著學(xué)生去探究。并且將學(xué)生分成小組去討論該如何推導(dǎo)證明該定理。

  教師設(shè)問如下:

 、佼(dāng)△ABC是銳角三角形時,結(jié)論是否還成立呢?

  ②在直角三角形中我們找的中間變量是直角三角形的斜邊,那么,此時我們應(yīng)該找一個什么樣的中間變量呢?

  ③什么量可以與三角形的邊與正弦值聯(lián)系起來呢?

  在得出結(jié)果之后接著設(shè)問:當(dāng)△ABC是鈍角三角形時,結(jié)論是否還成立呢?通過這樣一個問題,不僅讓學(xué)生知道數(shù)學(xué)問題需要分類討論所有可能出現(xiàn)的情況,更能真正培養(yǎng)學(xué)生分析問題的能力與知識遷移能力,將在銳角三角形中的證明方法運用到鈍角三角形中來。

  學(xué)生小組討論,小組代表發(fā)表自己的組內(nèi)的意見,得出結(jié)論。

  最后師生共同歸納定理的數(shù)學(xué)語言與文字語言。

  正弦定理的教學(xué)設(shè)計 7

  教學(xué)目標

  【知識與技能】

  掌握正弦定理及推導(dǎo)過程,會利用正弦定理證明簡單三角形以及求解三角形邊角問題。

  【過程與方法】

  通過三角函數(shù),向量數(shù)量積等多處知識間聯(lián)系來體現(xiàn)事物之間普遍聯(lián)系與辯證統(tǒng)一。

  【情感態(tài)度與價值觀】

  問題分析解決過程中,體會數(shù)學(xué)的嚴謹性。

  教學(xué)重難點

  【重點】

  正弦定理證明及應(yīng)用。

  【難點】

  正弦定理的證明,正弦定理在解三角形應(yīng)用思路。

  教學(xué)過程

 。ㄒ唬⿲(dǎo)入新課

  提出問題:在初中已經(jīng)學(xué)習(xí)過解直角三角形,已會根據(jù)直角三角形中已知的邊與角,求出未知的邊與角,直角三角形存在如下邊角關(guān)系,在一個三角形中各邊和他所對角的正弦之比相等,帶領(lǐng)學(xué)生猜測對任意三角形都成立?這就是這一節(jié)課主要研究的課題。

  板書課題,正弦定理。

 。ǘ┥尚轮

  提問:驗證任意三角形成立?還需要驗證哪些三角形結(jié)論成立?

  預(yù)設(shè)學(xué)生回答銳角三角形,鈍角三角形。

  提問:如何驗證銳角三角形,鈍角三角形上述結(jié)論成立?能不能轉(zhuǎn)化成直角三角形研究邊角關(guān)系

  思考:嘗試用其他方法證明正弦定理。

  提問:觀察正弦定理的`結(jié)構(gòu),這個式子包含了哪些等式,每個等式有幾個量?

  學(xué)生小組討論總結(jié),三個等式,每個式子有四個量,如果知道其中三個可以求出第四個。

  (三)鞏固提高

  課本例一,例二,思考利用正弦定理,可以解決斜三角形哪些類型的問題。

  小組討論,師生共同總結(jié)正弦定理解決的兩類斜三角形問題。

 。ㄋ模┬〗Y(jié)作業(yè)

  小結(jié):提問學(xué)生本節(jié)課有什么收獲,闡述正弦定理公式,及解決的問題。

  作業(yè):思考嘗試用其他方法證明正弦定理。

  正弦定理的教學(xué)設(shè)計 8

  一、教學(xué)目標:

  掌握正弦定理的基本概念及其應(yīng)用;

  理解正弦定理在三角形中的作用;

  掌握利用正弦定理解決實際問題的方法。

  二、教學(xué)重點:

  掌握正弦定理的基本概念及其應(yīng)用;

  理解正弦定理在三角形中的作用;

  掌握利用正弦定理解決實際問題的方法。

  三、教學(xué)難點:

  掌握利用正弦定理解決實際問題的方法;

  理解正弦定理在三角形中的作用。

  四、教學(xué)方法:

  講授法;

  示范法;

  練習(xí)法。

  五、教學(xué)過程:

  導(dǎo)入(5分鐘)

  通過觀察實物或圖片,讓學(xué)生回想起在三角形中哪些數(shù)學(xué)知識點。然后簡單介紹正弦定理,引導(dǎo)學(xué)生理解正弦定理在三角形中的作用。

  新知講解(20分鐘)

 。1)什么是正弦定理?

  正弦定理是指在任意三角形中,任意一邊上的正弦值與另外兩邊的正弦值之比相等。具體表達式為:a/sin A=b/sin B=c/sin C。

 。2)正弦定理的應(yīng)用

  利用正弦定理可以解決三角形的任意邊的長度問題,包括已知一邊、一角、一對相鄰邊的長度,求第三邊的長度;已知兩邊、一個角的正弦值和第三邊的長度,求第二邊的長度。

 。3)正弦定理的證明

  正弦定理的證明可以采用反證法。首先,根據(jù)余弦定理,我們可以得到以下方程:a^2=b^2+c^2-2bc*cos A。然后,我們可以根據(jù)反證法證明這個方程的兩邊與sin A成比例,即a/sin A=b/sin B=c/sin C。

  練習(xí)(20分鐘)

  解答學(xué)生的練習(xí)題(20分鐘)

  老師應(yīng)該針對學(xué)生的錯誤答案進行解答,并給予正確的指導(dǎo)和糾正。對于學(xué)生做對的題目,可以給予表揚和鼓勵。同時,也要引導(dǎo)學(xué)生自己總結(jié)歸納,以便在今后的學(xué)習(xí)中能夠更好地應(yīng)用正弦定理。

  歸納總結(jié)(10分鐘)

  老師可以讓學(xué)生簡單總結(jié)一下今天的課程內(nèi)容,以便學(xué)生更好地理解和掌握正弦定理?梢詮娬{(diào)正弦定理的.應(yīng)用場景和方法,并鼓勵學(xué)生在今后的學(xué)習(xí)和生活中多多應(yīng)用。

  布置作業(yè)(5分鐘)

  老師可以根據(jù)今天的課程內(nèi)容布置相應(yīng)的作業(yè),讓學(xué)生在家中進行練習(xí)和鞏固。同時,也可以讓學(xué)生回家后和家長一起討論今天所學(xué)的內(nèi)容,以便更好地加深理解。

  結(jié)束語(5分鐘)

  老師可以簡單總結(jié)一下今天的課程內(nèi)容,并強調(diào)正弦定理在解決實際問題中的重要性和應(yīng)用價值。同時,也可以鼓勵學(xué)生在今后的學(xué)習(xí)中多多應(yīng)用正弦定理,提高自己的數(shù)學(xué)素養(yǎng)和能力。

  正弦定理的教學(xué)設(shè)計 9

  一、說教材分析

  1、教材地位和作用

  在初中,學(xué)生已經(jīng)學(xué)習(xí)了三角形的邊和角的基本關(guān)系;同時在必修4,學(xué)生也學(xué)習(xí)了三角函數(shù)、平面向量等內(nèi)容。這些為學(xué)生學(xué)習(xí)正弦定理提供了堅實的基礎(chǔ)。正弦定理是初中解直角三角形的延伸,是揭示三角形邊、角之間數(shù)量關(guān)系的重要公式,本節(jié)內(nèi)容同時又是學(xué)生學(xué)習(xí)解三角形,幾何計算等后續(xù)知識的基礎(chǔ),而且在物理學(xué)等其它學(xué)科、工業(yè)生產(chǎn)以及日常生活等常常涉及解三角形的問題。依據(jù)教材的上述地位和作用,我確定如下教學(xué)目標和重難點

  2、教學(xué)目標

 。1)知識目標:

  ①引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,探索證明正弦定理的方法;

 、诤唵芜\用正弦定理解三角形、初步解決某些與測量和幾何計算有關(guān)的實際問題。

 。2)能力目標:

 、偻ㄟ^對直角三角形邊角數(shù)量關(guān)系的研究,發(fā)現(xiàn)正弦定理,體驗用特殊到一般的思想方法發(fā)現(xiàn)數(shù)學(xué)規(guī)律的過程。

 、谠诶谜叶ɡ韥斫馊切蔚倪^程中,逐步培養(yǎng)應(yīng)用數(shù)學(xué)知識來解決社會實際問題的能力。

 。3)情感目標:通過設(shè)立問題情境,激發(fā)學(xué)生的學(xué)習(xí)動機和好奇心理,使其主動參與雙邊交流活動。通過對問題的提出、思考、解決培養(yǎng)學(xué)生自信、自立的優(yōu)良心理品質(zhì)。通過教師對例題的講解培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣及科學(xué)的學(xué)習(xí)態(tài)度。

  3、教學(xué)的重﹑難點

  教學(xué)重點:

  正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用;

  教學(xué)難點:正弦定理的探索及證明;

  教學(xué)中為了達到上述目標,突破上述重難點,我將采用如下的教學(xué)方法與手段

  二、說教學(xué)方法與手段

  1、教學(xué)方法

  教學(xué)過程中以教師為主導(dǎo),學(xué)生為主體,創(chuàng)設(shè)和諧、愉悅教學(xué)環(huán)境。根據(jù)本節(jié)課內(nèi)容和學(xué)生認知水平,我主要采用啟導(dǎo)法、感性體驗法、多媒體輔助教學(xué)。

  2、學(xué)法指導(dǎo)

  學(xué)情調(diào)動:學(xué)生在初中已獲得了直角三角形邊角關(guān)系的'初步知識,正因如此學(xué)生在心理上會提出如何解決斜三角形邊角關(guān)系的疑問。

  學(xué)法指導(dǎo):指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,讓學(xué)生在問題情景中學(xué)習(xí),再通過對實例進行具體分析,進而觀察歸納、演練鞏固,由具體到抽象,逐步實現(xiàn)對新知識的理解深化。

  3、教學(xué)手段

  利用多媒體展示圖片,極大的吸引學(xué)生的注意力,活躍課堂氣氛,調(diào)動學(xué)生參與解決問題的積極性。為了提高課堂效率,便于學(xué)生動手練習(xí),我把本節(jié)課的例題、課堂練習(xí)制作成一張習(xí)題紙,課前發(fā)給學(xué)生。

  下面我講解如何運用上述教學(xué)方法和手段開展教學(xué)過程

  三、說教學(xué)過程設(shè)計

  教學(xué)流程:

  引出課題

  引出新知

  歸納方法

  鞏固新知

  布置作業(yè)

  四、說總結(jié)分析:

  現(xiàn)代教育心理學(xué)的研究認為,有效的性質(zhì)概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)基礎(chǔ)上的,因此我在教學(xué)設(shè)計過程中注意了:

 、逶趯W(xué)生已有知識結(jié)構(gòu)和新性質(zhì)概念間尋找“最近發(fā)展區(qū)”。

  ㈡引導(dǎo)學(xué)生通過同化,順應(yīng)掌握新概念。

  ㈢設(shè)法走出“性質(zhì)概念一帶而過,演習(xí)作業(yè)鋪天蓋地”的誤區(qū),促使自己與學(xué)生一起走進“重視探究、重視交流、重視過程”的新天地。

  我認為本節(jié)課的設(shè)計應(yīng)遵循教學(xué)的基本原則;注重對學(xué)生思維的發(fā)展;貫徹教師對本節(jié)內(nèi)容的理解;體現(xiàn)“學(xué)思結(jié)合﹑學(xué)用結(jié)合”原則。希望對學(xué)生的思維品質(zhì)的培養(yǎng)﹑數(shù)學(xué)思想的建立﹑心理品質(zhì)的優(yōu)化起到良好的作用。

  設(shè)計意圖:我的板書設(shè)計的指導(dǎo)原則:簡明直觀,重點突出。本節(jié)課的板書教學(xué)重點放在黑板的正中間,為了能加深學(xué)生對正弦定理以及其應(yīng)用的認識,把例題放在中間,以期全班同學(xué)都能看得到。

  正弦定理的教學(xué)設(shè)計 10

  大家好,今天我說課的題目是《正弦定理》。

  新課標指出:高中教育屬于基礎(chǔ)教育,具有基礎(chǔ)性,且具有多樣性與選擇性,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。

  一、說教材

  教師對教材的掌握程度,是評判一位教師是否能上好一堂課的基本標準。在正式內(nèi)容開始之前,我要先談一談對教材的理解。

  《正弦定理》是人教A版必修5第一章第一節(jié)的內(nèi)容,其主要內(nèi)容是正弦定理及其應(yīng)用。此前學(xué)習(xí)了三角函數(shù)的相關(guān)知識,且積累很多的證明、推導(dǎo)的經(jīng)驗,為本節(jié)課的學(xué)習(xí)都起到了一定的鋪墊作用。本節(jié)課的學(xué)習(xí),也為以后學(xué)習(xí)和解決生活中的一些問題提供幫助。因此本節(jié)的學(xué)習(xí)有著極其重要的地位。

  二、說學(xué)情

  合理把握學(xué)情是上好一堂課的基礎(chǔ),下面我來談?wù)剬W(xué)生的實際情況。

  這一階段的學(xué)生已經(jīng)具備了一定的分析問題、解決問題的能力,且在知識方面也有了一定的積累。所以,教學(xué)中,利用學(xué)生的特點以及原有經(jīng)驗進行教學(xué),增強學(xué)生的課堂參與度。

  三、說教學(xué)目標

  根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標:

  (一)知識與技能

  能證明正弦定理,并能利用正弦定理解決實際問題。

  (二)過程與方法

  通過正弦定理的'推導(dǎo)過程,提高分析問題、解決問題的能力。

  (三)情感、態(tài)度與價值觀

  在正弦定理的推導(dǎo)過程中,感受數(shù)學(xué)的嚴謹,提升對數(shù)學(xué)的興趣。

  四、說教學(xué)重難點

  我認為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。而教學(xué)重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點為:正弦定理。難點:正弦定理的證明。

  五、說教法和學(xué)法

  現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,本節(jié)課我采用講授法、啟發(fā)法、練習(xí)法、小組合作、自主探究等教學(xué)方法。

  六、說教學(xué)過程

  在這節(jié)課的教學(xué)過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調(diào)動學(xué)生參與課堂的積極性、主動性。

  (一)導(dǎo)入新課

  首先是導(dǎo)入環(huán)節(jié),我將采用溫故知新的導(dǎo)入方式。

  復(fù)習(xí)初中學(xué)習(xí)的任意三角形中的邊和角存在什么樣的關(guān)系。在學(xué)生回顧之后,再提問:能否得到這個邊、角關(guān)系準確量化的表示?引出本節(jié)課學(xué)習(xí)的內(nèi)容——正弦定理。

  通過溫故知新的導(dǎo)入方式,能為本節(jié)課的后續(xù)的教學(xué)做好鋪墊。

  (二)講解新知

  接下來是新課講授環(huán)節(jié),我將分為四部分,分別為在直角三角形中推導(dǎo)正弦定理、在銳角三角形中推導(dǎo)正弦定理、在鈍角三角形中推導(dǎo)正弦定理以及正弦定理的應(yīng)用。

  素的過程叫做解三角形。

  在介紹完正弦定理后,接下來介紹正弦定理的應(yīng)用。通過提問:我們利用正弦定理可以解決一些怎樣的解三角形問題呢?總結(jié):如果已知三角形的任意兩個角與一邊,由三角形內(nèi)角和定理,可以計算出三角形的另一角,并由正弦定理計算出三角形的另兩邊;如果已知三角形的任意兩邊與其中一邊的對角,應(yīng)用正弦定理,可以計算出另一邊的對角的正弦值,進而確定這個角和三角形其他的邊和角。

  整節(jié)課,本著學(xué)生為主體,教師為主導(dǎo)的設(shè)計理念,結(jié)合教學(xué)內(nèi)容和學(xué)生的特點,利用學(xué)生已有的知識經(jīng)驗,采用層次性的問題,一步步引導(dǎo)學(xué)生思考交流、發(fā)現(xiàn)知識。并且在整個過程中,講授法、引導(dǎo)法、合作探究等多種教學(xué)方法的使用,不但讓學(xué)生學(xué)會知識,也培養(yǎng)學(xué)生的學(xué)習(xí)能力。通過這樣的設(shè)計,提升學(xué)生學(xué)習(xí)數(shù)學(xué)的信心,提高學(xué)習(xí)數(shù)學(xué)的興趣。

 

【正弦定理的教學(xué)設(shè)計】相關(guān)文章:

《正弦定理》教學(xué)設(shè)計(精選11篇)10-24

正弦定理教學(xué)設(shè)計(精選5篇)02-09

正弦定理教學(xué)反思05-21

正弦定理教學(xué)反思范文10-20

正弦定理課后的教學(xué)反思10-17

正弦定理說課稿05-20

《正弦定理》說課稿10-19

正弦定理說課稿07-12

《正弦定理》教學(xué)反思(精選10篇)04-11

正弦定理教學(xué)反思4篇05-24

龙胜| 商南县| 兴和县| 香格里拉县| 白银市| 福清市| 绿春县| 交城县| 武汉市| 翁牛特旗| 乃东县| 千阳县| 辽阳县| 肥城市| 雷山县| 伊宁县| 同仁县| 石泉县| 正阳县| 札达县| 成安县| 鲜城| 定南县| 南汇区| 依兰县| 肃北| 德昌县| 宜春市| 错那县| 河南省| 温州市| 左云县| 阿拉善盟| 剑川县| 大城县| 封开县| 鄂伦春自治旗| 无棣县| 邵东县| 共和县| 建德市|